Oxidative Stress and Respiratory System: Pharmacological and Clinical Reappraisal of N-Acetylcysteine
نویسندگان
چکیده
The large surface area for gas exchange makes the respiratory system particularly susceptible to oxidative stress-mediated injury. Both endogenous and exogenous pro-oxidants (e.g. cigarette smoke) trigger activation of leukocytes and host defenses. These mechanisms interact in a "multilevel cycle" responsible for the control of the oxidant/antioxidant homeostasis. Several studies have demonstrated the presence of increased oxidative stress and decreased antioxidants (e.g. reduced glutathione [GSH]) in subjects with chronic obstructive pulmonary disease (COPD), but the contribution of oxidative stress to the pathophysiology of COPD is generally only minimally discussed. The aim of this review was to provide a comprehensive overview of the role of oxidative stress in the pathogenesis of respiratory diseases, particularly COPD, and to examine the available clinical and experimental evidence on the use of the antioxidant N-acetylcysteine (NAC), a precursor of GSH, as an adjunct to standard therapy for the treatment of COPD. The proposed concept of "multilevel cycle" helps understand the relationship between respiratory diseases and oxidative stress, thus clarifying the rationale for using NAC in COPD. Until recently, antioxidant drugs such as NAC have been regarded only as mucolytic agents. Nevertheless, several clinical trials indicate that NAC may reduce the rate of COPD exacerbations and improve small airways function. The most plausible explanation for the beneficial effects observed in patients with COPD treated with NAC lies in the mucolytic and antioxidant effects of this drug. Modulation of bronchial inflammation by NAC may further account for these favorable clinical results.
منابع مشابه
Evaluation of Oxidative Stress in Combination Therapy with D-penicillamine and N-Acetylcysteine (NAC) in Lead Poisoning in Opium Addicts
Background: N-acetylcysteine (NAC) is a putative antioxidant and has gained attention as a promising agent for chelating heavy metals including lead. Considering the animal studies results, we hypothesized that adding NAC to the treatment regimen may improve the success of treatment with lead chelators. Methods: A total of 46 patients who were lead-poisoned opioid addicts were divided into two ...
متن کاملStudy of The Effects of N-Acetylcysteine on Oxidative Stress Status of Patients on Maintenance-Hemodialysis Undergoing Cadaveric Kidney Transplantation
N-acetylcysteine (NAC) is a potent antioxidant that acts through regenerating glutathione stores and scavenging oxygen-free radicals. This study assesses the short-term effects of NAC in cadaveric kidney transplant (KT) recipients. A double blind, randomized, placebo controlled trial was designed and patients were randomly assigned to receive either NAC or placebo. Glutathione peroxidase (GPX) ...
متن کاملProtective effect of N-acetylcysteine on Dipentyl phthalate (DPeP) induced cognitive dysfunction and brain oxidative stress in mice
Background: Dipentyl phthalate (DPeP) is a plasticizer compound commonly used in polyvinylchloride plastic to increase their softness and flexibility. They are not bound covalently to the plastic polymers and can therefore leach out into the environment, and have been shown to adversely affect the health of humans and animals. Methods: We investigated the effect of DPeP on the various cognitive...
متن کاملStudy of The Effects of N-Acetylcysteine on Oxidative Stress Status of Patients on Maintenance-Hemodialysis Undergoing Cadaveric Kidney Transplantation
N-acetylcysteine (NAC) is a potent antioxidant that acts through regenerating glutathione stores and scavenging oxygen-free radicals. This study assesses the short-term effects of NAC in cadaveric kidney transplant (KT) recipients. A double blind, randomized, placebo controlled trial was designed and patients were randomly assigned to receive either NAC or placebo. Glutathione peroxidase (GPX) ...
متن کاملThe hepatoprotective and antioxidant effects of Curcumin and N-acetylcysteine in rats exposed to arsenic
Introduction: Arsenic is a highly toxic element that is widely distributed in environment. Antioxidants depletion and oxidative stress is now considered as one of the possible mechanisms of arsenic-induced toxicity. N-acetylcysteine (NAC) and Curcumin (Cur) are potential antioxidants that can compensate the depletion of antioxidants. This study aimed to compare the hepatoprotective effect of Cu...
متن کامل